Exam II , MTH 221, Fall 2015

Ayman Badawi

QUESTION 1. (i) Let $D=\{(a+b+2 c, 3 a-3 b, a+2 b+3 c) \mid a, b, c \in R\}$. Then $\operatorname{dim}(D)=$
a) 1
b) 2
c) 3
d) None
(ii) Let A be a 2×2 matrix such that A is row-equivalent to $\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$. Then the eigenvalues of A are :
a) 2, 4
b) $\frac{1}{2}, \frac{1}{4}$
c) $\frac{1}{2}, 4$
d) None of the previous
(iii) Which of the following matrices with the given properties are (is) INVERTIBLE and diagnolizable:
a) A is $3 \times 3, C_{A}(x)=(x-3)^{2}(x-4), E_{3}=\operatorname{span}\{(2,0,2),(0,1,4)\}$, and $E_{4}=\operatorname{span}\{(0,0,9)\}$
b) A is $2 \times 2, C_{A}(x)=(x-4)^{2}$ and $E_{4}=\operatorname{span}\{(0,7)\}$
c) A is $2 \times 2, C_{A}(x)=x(x-2), E_{0}=\operatorname{span}\{(4,1)\}$, and $E_{2}=\operatorname{span}\{(0,5)\}$
d) a and b
(e) b and c
(f) a and c
(iv) Let $A=\left[\begin{array}{cccc}0 & 0 & 1 & 4 \\ 1 & 0 & -1 & -4 \\ 0 & 0 & -3 & -12\end{array}\right]$. Then $N(A)=$
a) $\operatorname{span}\{(0,0,1,4),(1,0,0,0)\}$
b) $\operatorname{span}\{(0,2,0,0)\}$
e) $\operatorname{span}\{(0,1,0,0),(0,0,-4,1\}$
d) None of the previous
(v) Let $A=\left[\begin{array}{cccc}0 & 0 & 1 & 4 \\ 1 & 0 & -1 & -4 \\ 0 & 0 & -3 & -12\end{array}\right]$. Then $\operatorname{col}(A)$
a) $\operatorname{Span}\{(0,1,0),(4,-4,-12)\}$
b) $\operatorname{Span}\{(0,1,0),(1,0,0)\}$
c) $\operatorname{span}\{(1,-1,-2)\}$
d) None of the previous
(vi) Let $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & -6 \\ 0 & 1 & -5\end{array}\right]$. Then the eigenvalues of A are :
a) $0,-5$
b) $0,-2,-3$
c) $0,-6,-5$
d) $1,-5,-6$
e)None of the previous
(vii) Let D be a subspace of $R^{2 \times 2}$ such that $\operatorname{dim}(D)=2$. Then a possibility for D is
a) $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 2 a+4 b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in R\right\}$
b) $D=\left\{\left.\left[\begin{array}{cc}a+3 & 4 a \\ b & 6 b\end{array}\right] \right\rvert\, a, b \in R\right\}$
e) $D=\left\{\left.\left[\begin{array}{cc}a+2 b+c & 3 a+6 b \\ c & 0\end{array}\right] \right\rvert\, a, b, c \in R\right\} \quad$ d) $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 2 a+4 b \\ c & a+b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
(viii) Let A be a 2×2 matrix such that $A\left[\begin{array}{l}1 \\ 9\end{array}\right]=3\left[\begin{array}{l}1 \\ 9\end{array}\right]$ and $\operatorname{det}(A)=15$. Then $\operatorname{Trace}(\mathrm{A})=$
a) 6
b) 8
c) 30
d) 10
e) Need more information.
(ix) Given $D=\left\{(a, b, c) \in R^{3} \mid a+b=0\right.$ and $a+c=0$, where $\left.a, b, c \in R\right\}$ is a subspace of R^{3}. Then $D=$
a) $\operatorname{span}\{(1,0,-1),(1,-1,0)\}$
b) $\operatorname{span}\{(-6,6,6)\}$
c) $\operatorname{span}\{(0,1,-1),(1,-1,0)\}$
$\begin{array}{ll}\text { d) } R^{3} & \text { e)None of the }\end{array}$ previous
(x) One of the following is a basis for P_{3}
a) $\left\{1+x^{2},-x-x^{2}, x^{2}\right\}$
b) $\left\{1+x+x^{2},-1-x-2 x^{2}, 1+x+5 x^{2}\right\}$
c) $\left\{5, x-3 x^{2}, 10+3 x-9 x^{2}\right\}$
$\{10, x+3,16+2 x\}$
e) None of the previous is correct
(xi) Given $F=\left\{f(x) \in P_{4} \mid f^{\prime}(2)=0\right\}$ is a subspace of P_{4}. Then a basis for F is
a) $\left\{x-2, x^{2}-4, x^{3}-8\right\}$.
b) $\left\{x^{2}-4 x, x^{3}-12 x\right\}$
c) $\left\{x^{3}+x^{2}-16 x, x^{3}-3 x^{2}, x^{2}-4 x\right\}$
d) None of the previous
(xii) One of the following is true:
a) $\left\{A \in R^{2 \times 2} \mid \operatorname{det}\left(A^{T}\right)=0\right\}$ is a subspace of $R^{2 \times 2} \quad$ b) $\left\{(a, b, c) \in R^{3} \mid a, b, c \in R\right.$ and $\left.a+b+c-1=0\right\}$ is a subspace of R^{3}
e) $\left\{\left(a^{3}, b, a^{3}\right) \mid a, b \in R\right\}$ is a subspace of R^{3}
d) $\{(a, 3 a+b,-b) \mid a, b \geq 0\}$ is a subspace of R^{3}.
(xiii) Given that $S=\left\{A \in R^{2 \times 2} \mid \operatorname{Trace}(A)=0\right\}$ is a subspace of $R^{2 \times 2}$. Then $\operatorname{dim}(S)=$
a) 4
b) 3
c) 1
d) 2

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam II, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points) Let $A=\left[\begin{array}{lll}1 & b & 4 \\ a & 3 & 1 \\ 4 & c & 0\end{array}\right]$. Given A is row-equivalent to $\left[\begin{array}{lll}0 & 0 & 2 \\ 2 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(i) Find the values of b, a, c. Trivial/ Ideas discussed in class
(ii) Find a basis for the column space of A. Trivial

QUESTION 2. (10 points) Let $S=\{(a+b+2 c, 3 a+6 c, 2 a-b+4 c) \mid b, c \in R\}$. Is S a subspace of R^{3} ? explain. If yes, find $\operatorname{dim}(\mathrm{A})$, find basis for A, and write A as a span of a basis. Trivial/ basic question

QUESTION 3. (10 points)

(i) Find a basis for P_{4} such that each element in the basis is of degree 3. Show the work. some thinking is involved here, so we need 4 INDEPENDENT polynomials each is of degree 3 . As you translate to points in R^{4} (assume polynomials are written in descending order according to their degree), so we need to form a matrix 4×4 such that all entries in the first column are 1 (to ensure getting polynomials each of degree 3). Now you stare at the matrix and choose the other entries so that when you change it to semi-echelon all rows survive. For example Take the matrix $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$. Now by staring at $A, \operatorname{det}(A) \neq 0$. So all rows are independent (or change it to semi-echelon/ all rows will survive). Now translate back to polynomials: so $x^{3}, x^{3}+x^{2}, x^{3}+x, x^{3}+1$ is the desired basis.
(ii) Let $f_{1}, f_{2}, f_{3}, f_{4}$ be polynomial in P_{4} such that each is of degree 2 . Show that $f_{1}, f_{2}, f_{3}, f_{4}$ are dependent.

This is supposed to be a trivial one, note that f_{1}, \ldots, f_{4} are elements of P_{3} as well. Since $\operatorname{dim}\left(P_{3}\right)=3$, every 4 elements in P_{3} are dependent

QUESTION 4. (12 points) TYPICAL BASIC QUESTION/ SEE CLASS NOTES
a) Let $A=\left\{F \in R^{3 \times 3} \mid \operatorname{Rank}(F) \leq 2\right\}$. Then A is not a subspace of $R^{3 \times 3}$. Why?
b) Let $A=\{(a, b, c) \mid a+2 b+c=4\}$. Then A is not a subspace of R^{3}. Why?
c) Let $A=\left\{f(x) \in P_{4} \mid f(2)=0\right.$ or $\left.f(3)=0\right\}$. Then A is not a subspace of P_{4}. Why?
d) Let $A=\left\{F \in R^{3 \times 3} \mid \operatorname{det}(A)=0\right\}$. Then A is not a subspace of $R^{3 \times 3}$. Why?

QUESTION 5. a) (10 points) Let $F=\left\{A \in R^{2 \times 2}\right.$ such that $\left.A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$. Show that F is a subspace of $R^{2 \times 2}$. Then find a basis for F. Done in class/ see your notes
b) (6 points) Given $\mathrm{L}=\{A, B, C, D\}$ is a basis for $R^{2 \times 2}$, where $A=\left[\begin{array}{cc}2 & 4 \\ -2 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & -4 \\ 2 & -5\end{array}\right]$. Find C and D. Note that C and D are not unique. Show the work

Here is the idea: We need to form a matrix $F, 4 \times 4$, with 4 independent rows. Of course the first two rows are A and B. Now stare at F add two more rows so that when you change F to the semi-echelon all rows survive. After you do that, translate each row of the two rows you added to an 2×2 matrix.

QUESTION 6. (12 points) Given A is a 2×2 matrix such that $3,-3$ are eigenvalues of $A, E_{3}=\operatorname{span}\{(4,2)\}$, and $E_{-3}=\operatorname{span}\{(-2,0)\}$.
(i) Find the trace of A^{-1}. basic/ see class notes
(ii) Show that A^{2} is a diagonalizable, i.e., find an invertible matrix W and a diagonal matrix D such that $W^{-1} A^{2} W=D$. basic
(iii) Show that A^{T} is diagnolizable, i.e., find an invertible matrix W and a diagonal matrix D such that $W^{-1} A^{T} W=D$. Since $F^{-1} A F=D, F^{T} A^{T}\left(F^{-1}\right)^{T}=D^{T}$. Now here $W=\left(F^{-1}\right)^{T}$.
(iv) Find a nonzero 2×4 matrix D such that $A D=3 D$. by matrix multiplication, let $d_{1}, d_{2}, d_{3}, d_{4}$ be the columns of D. Then $A d_{1}=3 d_{1}, A d_{2}=3 d_{2}, \ldots, A d_{4}=3 d_{4}$. By staring at the question and knowing 3 is an eigenvalue of $A /$ all these columns must come from E_{3}. Choose all column of D from E_{3} and we are done.

QUESTION 7. (18 points) Let A be a 3×3 matrix such that $C_{A}(x)=x(x-5)^{2}$. Given $N u l(A)=\left\{\left(x_{1}, 2 x_{1}, 0\right) \mid x_{1} \in R\right\}$ and $N u l\left(5 I_{3}-A\right)=\left\{\left(3 x_{3}, 0, x_{3}\right) \mid x_{3} \in R\right\}$,
(i) find $\operatorname{det}(A)$.
(ii) Is A diagnolizable? if yes, find a diagonal matrix D and an invertible matrix W such that $W^{-1} A W=D$. If no, explain. No. Since $\operatorname{dim}\left(E_{5}\right)=1$ but 5 has multiplicaty 2. Note $N u l(A)=N u l(-A)=E_{0}$ and $N u l\left(5 I_{3}-A\right)=$ E_{5}
(iii) Find Trace of A. Adding eigenvalues with multiplicaty. So 5+5+0=10
(iv) Find $\operatorname{det}\left(A-2 I_{3}\right)$. We know eigenvalues of $A-2 I_{3}$ are $\mathbf{0 - 2 , 5 - 2 , 5 - 2}$. Multiply them we get -18
(v) Let $D=A+11 I_{3}$. Find a nonzero point in R^{3}, say $v=(a, b, c)$, such that $D\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}11 a \\ 11 b \\ 11 c\end{array}\right]$ Since 0 is an egivalue of A choose a nonzero point v in $\operatorname{Nul}(A)=E_{0}$. Since $A v=0 v=0$, we have $D v=\left(A+11 I_{3}\right) v=A v+11 v=$ $0+11 v=11 v$.
(vi) Given $F=\left[\begin{array}{lll}a & b & \pi \\ c & d & e \\ \sqrt{3} & 8 & f\end{array}\right]$ such that $A F=5 F$. Find all entries of F. What is the rank of F. The same idea as in \mathbf{V}. So the column of F must come from E_{5}. So set the first column of $F,(a, c, \sqrt{3})=\left(3 x_{3}, 0, x_{3}\right)$. We get $x_{3}=\sqrt{3}, \mathbf{c}=\mathbf{0}$ and $a=3 x_{3}=3 \sqrt{3}$, now do similar for column II and column III. Since all columns of F are coming from E_{5} and $\operatorname{dim}\left(E_{5}\right)=1, \operatorname{Rank}(\mathbf{F})=\mathbf{1}$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam II , MTH 221 , Spring 2012

Ayman Badawi

QUESTION 1. (19 questions, each = 2 points, Total of points = 38)

(i) let $A=\left[\begin{array}{cc}0 & 2 \\ 1 & -1\end{array}\right]$. The eigenvalues of A are
a) $-2,1$
b) $0,-1$
c) $1,-1$
d) None of the previous
(ii) Let A be a 2×2 matrix such that A is row-equivalent to $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$. Then the eigenvalues of A :
a) Cannot be determined
b) 2,0
c) $0.5,0$
d) None of the previous
(iii) Let A as in the previous question. Then $N(A)=$
a) $\{(0,0)\}$
b) $\operatorname{span}\{(0,1)\}$
c) $\operatorname{span}\{(2,0)\}$
d) None of the previous
(iv) One of the following matrices with the given properties is diagnolizable:
a) A is $3 \times 3, C_{A}(\alpha)=(2-\alpha)^{2}(3-\alpha)$, and $E_{2}=\operatorname{span}\{(2,4)\}, E_{3}=\operatorname{span}\{(3,3)\}$
b) A is $2 \times 2, C_{A}(\alpha)=-\alpha(5-\alpha), E_{0}=\operatorname{span}\{(0,1)\}, E_{5}=\operatorname{span}\{(3,0)\}$
c) A is $2 \times 2, C_{A}(\alpha)=\alpha^{2}, E_{0}=\operatorname{span}\{(4,1)\}$
d) None of the previous
(v) Given A is $4 \times 4, C_{A}(\alpha)=(2-\alpha)^{3}(5-\alpha)$. Then $\operatorname{det}\left(A^{T}\right)=$
a) 10
b) 40
c) $\frac{1}{10}$
d) $\frac{1}{40}$
(vi) Let A as above such that $A\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 6\end{array}\right]$. Then one of the following is true:
a) $A\left[\begin{array}{c}1 \\ 0 \\ 1.5\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$
b) $A^{-1}\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ 1.5\end{array}\right]$
e) (a) and (b) correct
d) $A^{-1}\left[\begin{array}{c}1 \\ 0 \\ 1.5\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$
(vii) Given A is $2 \times 2, \quad 0$ and 1 are eigenvalues of A such that $E_{0}=\left\{\left(-x_{2}, x_{2}\right) \mid x_{2} \in R\right\}$ and $E_{1}=\left\{\left(0, x_{2}\right) \mid x_{2} \in R\right.$. THEN (JUST WRITE DOWN THE ANSWER) $\quad A=$
(viii) Given A is $3 \times 3, C_{A}(\alpha)=(3-\alpha)^{2}(a-\alpha) . B$ is 3×3 and B is similar to A such that $\operatorname{det}(B)=54$. Then $a=$
a) 18
b) $1 / 18$
e) 6
d) Cannot be determined
(ix) Let $A=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ -1 & -2 & 0 & 1 \\ 1 & 3 & 1 & 1\end{array}\right]$. Then $N(A)=$
a) $\left\{\left(-2 x_{3}-2 x_{4}, x_{3}+x_{4}, x_{3}, x_{4}\right) \mid x_{3}, x_{4} \in R\right\}$
b) $\left\{\left(2 x_{3},-x_{3}, x_{3}, 0\right) \mid x_{3} \in R\right\}$
c) $\left\{\left(2 x_{3}+2 x_{4},-x_{3}-x_{4}, x_{3}, x_{4} \mid x_{3}, x_{4} \in R\right\}\right.$
d) None of the previous.
(x) Let A as above then $N(A)$ (as span)
a) $\operatorname{Span}\{(-2,1,1,0),(-2,1,0,1)\}$
b) $\operatorname{Span}\{(-4,2,-2,0)\}$
c) $\operatorname{span}\{(2,1,1,0)\}$
d) $\operatorname{Span}\{(2,-1,1,0),(2,-1,0,1)\}$
e) None of the previous
(xi) Let A as in Question ix. Column Space of $A=$
a) $\operatorname{Span}\{(1,0,0),(0,0,1),(-2,0,1)\}$
b) $\operatorname{Span}\{(1,-1,1),(2,-2,3),(0,1,1)\} \quad$ c) $\operatorname{Span}\{(1,0,0),(0,0,1),(-2,1,1)\}$
d) None of the previous
(xii) Let A as in Question ix. Then For each $B \in R^{3}$
a) The system of linear equations $A X=B^{T}$ has infinitely many solutions
b) The system of linear equations $A X=B^{T}$ has unique solution
c) The system of linear equations $A X=B^{T}$ may and may not be consistent (it all depends on the selected B)
d) I need more information, you keep asking nonsense questions.
(xiii) One of the following is a subspace of P_{3}
a) $\left\{\left(2 a_{1}+a_{0}\right) x^{2}+a_{1} x+a_{0} \mid a_{0}, a_{1} \in R\right\}$.
b) $\left\{a_{2} x^{2}+x+a_{0} \mid a_{0}, a_{2} \in R\right\}$
c) $\left\{x^{2}+a_{1} x+a_{0} \mid a_{0}, a_{1} \in R\right\}$
(xiv) Let D be a subspace of $R_{2 \times 2}$ such that $\operatorname{dim}(D)=2$. Then a possibility for D is
a) $D=\left\{\left.\left[\begin{array}{cc}a+b & a \\ 0 & b\end{array}\right] \right\rvert\, a, b \in R\right\}$
b) $D=\left\{\left.\left[\begin{array}{cc}a+1 & a \\ b & 0\end{array}\right] \right\rvert\, a, b \in R\right\}$
c) $D=\left\{\left.\left[\begin{array}{cc}a+b+c & a \\ c & b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
d) $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 2 a+4 b \\ 0 & a+2 b\end{array}\right] \right\rvert\, a, b \in R\right\}$
(xv) Let $D=\{(a+b+2 c, a-b, a+2 b+3 c) \mid a, b, c \in R\}$. Then $\operatorname{dim}(D)=$
a) 1
b) $3 \quad \mathrm{e}, 2$
d) None
(xvi) Let D as in QUESTION xv. Then a basis for D
a) $\{(4,0,6)\}$
b) $\{(1,1,1),(1,0,-1)\}$
d) $\{(1,1,1),(1,-1,2),(2,0,3)\}$
e) $\{(1,1,1),(1,-1,2)\}$
(xvii) One of the following points is in D (D is as in Question xv)
a) $(7,1,11)$
b) $(-2,0,3)$
d) $(0,-2,-3)$
e) $(1,5,-1)$
(xviii) One of the following is a basis for P_{3}
a) $\left\{x^{2}, x^{2}+x, x^{2}+1\right\}$
b) $\left\{x^{2}, x^{2}+2 x+1,2 x+1\right\}$
c) $\left\{1,1+x+x^{2},-1+x+x^{2}\right\}$
d) None of the
previous
(xix) Given A is a 3×3 matrix and $C_{A}(\alpha)=(1-\alpha)^{2}(3-\alpha)$. Given $E_{1}=\operatorname{span}\{(1,1,1),(1,-1,0)\}$ and $E_{3}=$ $\operatorname{span}\{(0,0,-1)\}$. Let Q be a 3×3 invertible matrix such that $Q^{-1} A Q=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then $Q=$
a) $\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$.
b) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$.
c) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
d) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$.

Second Exam MTH 221 , Fall 2011

Ayman Badawi

QUESTION 1. (Circle the correct answer, each $=2.5$, total 17.5)

(i) One of the following set is equal to R^{2} :
a) $\operatorname{Span}\{(2,1),(6,3)\}$
b) $\{(3,0),(2,4)\}$
d) $\operatorname{Span}\{(4,6)\}$
e) $\{(a+2 b,-4 b) \mid a, b \in R\}$
(ii) One of the following is a subspace of R^{3} :
a) $\left\{\left(a, 2 a, b^{2}\right) \mid a, b \in R\right\}$.
b) $\{(a+b, 0,2+b) \mid a, b \in R\}$
c) $\{(3,0, a+b) \mid a, b \in R\}$
d) $\{(a, 3 b-a, b) \mid a, b \in R\}$
(iii) Let A be a particular matrix 3×4 such that $N(A)=\left\{\left(a_{3}, a_{3}+a_{4}, a_{3}, a_{4}\right) \mid a_{3}, a_{4} \in R\right\}$. Then one of the following statement is true:
a) If the system of linear equations $A X=\left[\begin{array}{c}2 \\ 3 \\ 4.2\end{array}\right]$ has a solution, then the solution is unique. b) There must be a point $B=\left(b_{1}, b_{2}, b_{3}\right) \in R^{3}$ such that the system $A X=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ has no solutions. c) The system $A X=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ has infinitely many solutions. d) None of the previous statements is correct.
(iv) Let $A, N(A)$ as in the previous question. Let B be a matrix 4×3 such that $\operatorname{Rank}(B)=2$ and $A B=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Then one of the following is a possibility for B :
а) $\left[\begin{array}{lll}1 & 3 & 0 \\ 1 & 3 & 2 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$.
b) $\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & -1 & 0\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 2 \\ -1 & -1 & -1 \\ 0 & 0 & 0\end{array}\right]$
d) It is possible that B be as in (a) and as in (b) and
as in (c). e) There is no way that we can determine a possibility for B since A is not completely determined.

a) $A\left[\begin{array}{l}1 \\ 3 \\ 4 \\ 4\end{array}\right]=\overline{\left[\begin{array}{c}-4 \\ -4 \\ \theta \\ \theta\end{array}\right] \quad \text { b) } A\left[\begin{array}{l}1 \\ 4 \\ \theta \\ \theta\end{array}\right]}=\overline{\left[\begin{array}{c}-4 \\ -4 \\ \theta \\ \theta\end{array}\right] \quad \text { e) } A\left[\begin{array}{l}1 \\ \theta \\ 1 \\ \theta\end{array}\right]}=\overline{\left[\begin{array}{c}-4 \\ -1 \\ \theta \\ \theta\end{array}\right] \quad \text { d) The solutionte } A X}=\overline{\left[\begin{array}{c}-4 \\ -4 \\ \theta \\ \theta\end{array}\right] \text { is unique and }}$ hence $x_{t}=\theta, x_{2}=4, x_{3}=4, x_{4}=1$ is the only solution to the system $A X=\left[\begin{array}{c}-1 \\ -1 \\ \theta \\ \theta\end{array}\right]$
(vi) Let $F=\operatorname{Span}\left\{(a+c)+(a+c) x+(a+b+2 c) x^{2} \mid a, b, c \in R\right\}$ be a subspace of P_{3}. Then $\operatorname{dim}(F)=$
a) 2
b) $3 \quad \mathrm{c}) 1$
d) Cannot be determined
(vii) Let $F=\{(a+c, a+c, a+b+2 c) \mid a, b, c \in R\}$. Then $F=$ $\operatorname{span}\{(1,1,1),(0,0,6)\}$
b) $\operatorname{Span}\{(2,2,2),(-1,-1,-1)\}$
c) $\operatorname{Span}\{(1,1,2)\}$
d) R^{3}

QUESTION 2. (Circle the correct answer, each $=\mathbf{2 . 5}$, total $=\mathbf{2 2} .5$)

(i) Let $F=\left\{\left.\left[\begin{array}{cc}a-b & 0 \\ -a+b & 2 a-2 b\end{array}\right] \right\rvert\, a, b \in R\right\}$. Then $F=$ a) $\operatorname{Span}\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\right\} \quad$ b) $\operatorname{Span}\left\{\left[\begin{array}{cc}4 & 0 \\ -4 & 8\end{array}\right]\right\} \quad$ c) $\operatorname{Span}\left\{\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 1 & -2\end{array}\right]\right\} \quad$ d) None of the previous statements
(ii) Let F as above and $D \in F$ such that D is not the zero matrix. Then Column space of $\mathrm{D}=$
a) R^{2}
b) R^{4}
c) $\operatorname{Span}\{(1,-1)\}$
d) $\operatorname{Span}\{(1,0)\}$
e) Since different D has different columns, column space of D cannot be determined.
(iii) Given A is a 4×4 such that A is row-equivalent to $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 4\end{array}\right]$. Then $N(A)=$
a) $\left\{\left(x_{2}+x_{3}, x_{2}, x_{3}, 0\right) \mid x_{2}, x_{3} \in R\right\}$
b) $\operatorname{Span}\{(1,1,1,1),(0,0,0,1)\}$
d) $\left\{\left(-x_{2}+x_{3}, x_{2}, x_{3}, 0\right) \mid x_{2}, x_{3} \in R\right\}$
e) $\operatorname{Span}\{(-1,1,0,0),(-1,0,1,0)\}$.
(iv) Let A as in the previous question. Then one of the following points DOES NOT belong to the row space of A
a) $(-1,-1,-1,5)$
b) $(1,1,1,0)$
d) $(-1,-1,-1,0)$
e) $(1,1,-1,4)$
(v) Let A as in question (ii). Given $A\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 2 \\ 6\end{array}\right]$ and $A\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 4\end{array}\right]$. Then the column space of A is
a) $\operatorname{span}\{(0,0,0,2),(-1,0,0,1)\}$
b) $\operatorname{Span}\{(1,0,0,0),(1,1,2,4)\}$
c) $\operatorname{Span}\{(1,0,0,0),(0,1,0,0)\} \quad$ d) $\operatorname{span}\{(1,-1,-1,-1),(1,0,1,3)\}$
e) More information is needed to find Column space of A.
(vi) Let $F=\left\{f(x) \in P_{3} \mid f(-1)=0\right\}$. Then F is a subspace of P_{3}. Hence $F=$
a) $\operatorname{Span}\left\{6+6 x, x^{2}+1\right\}$
b) $\operatorname{span}\left\{x+x^{2}\right\}$
c) $\operatorname{Span}\left\{x+x^{2}, 2 x+x^{2}\right\}$
d) $\operatorname{Span}\left\{x+1, x^{2}+2 x+1\right\}$
(vii) One of the following is a basis for R^{4}
a) $\{(4,6,0,2),(-2,8,2,2),(-4,-6,3,7),(-2,-3,0,10)\} \quad$ b) $\{(1,0,0,0),(1,1,0,1),(0,1,0,1),(0,0,0,4)\}$
C) Any 4 points in R^{4} is a basis for R^{4}. d) (a) and (b) and (c) will do
(viii) One of the following points belong to $\operatorname{Span}\{(1,1,1),(-1,1,1),(3,-1,-1)\}$
a) $\left(4,2 \pi, 2 \pi^{+} 2\right)$
b) $(0,2,3)$
c) $(1, \pi,-\pi)$
d) $(1,6,6)$
(ix) Let A be a 3×3 such that $(0,4,0) \in N(A), A\left[\begin{array}{l}1 \\ 8 \\ 0\end{array}\right]=\left[\begin{array}{c}4 \\ 12 \\ 10\end{array}\right]$, and $A\left[\begin{array}{l}0 \\ 7 \\ 1\end{array}\right]=\left[\begin{array}{c}4 \\ 12 \\ 10\end{array}\right]$. Then $N(A)=$
a) $\operatorname{Span}\{0,1,0)\}$
b) $\operatorname{Span}\{(0,4,0),(1,8,0),(0,7,1)\}$
c) $\operatorname{Span}\{(0,4,0),(1,15,1)\}$
d) $\operatorname{span}\{(0,1,0),(1,1,-1)\}$
e) More information is needed

QUESTION 3. (JUST WRITE T OR F, Total = $\mathbf{1 0}$ points)

(i) Let $F=\left\{A \in R^{2 \times 2} \mid \operatorname{det}(A) \leq 1\right\}$. Then F is a subspace of $R^{2 \times 2}$

(ii) The span of any 5 polynomials in P_{5} is equal to P_{5}
(iii) $F=\left\{g(x) \in P_{4} \mid f(0)=0\right.$ or $\left.f(1)=0\right\}$ is a subspace of P_{4}
(iv) $D=\left\{f(x) \in P_{3} \mid \mathrm{f}(0)=1\right\}$ is a subspace of P_{3}.
(v) It is possible to have 7 matrices in $R^{2 \times 3}$ that are independent.
(vi) Every 6 points in R^{5} are dependent
(vii) It is possible that the span of 6 points in R^{3} is equal to R^{3}
(viii) If A is 3×3 and the system $A X=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$ has infinitely many solution, then it is possible that $\operatorname{Rank}(A)=1$
(ix) If A is a 3×5 matrix such that for every $B=\left(b_{1}, b_{2}, b_{3}\right) \in R^{3}$ the system $A X=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ has a solution, then $\operatorname{dim}(N(A))=2$.
(x) $F=\{(b,-2 a, 3+b) \mid a, b \in R\}$ is a subspace of R^{3}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Second Exam MTH 221 , Summer 011

Ayman Badawi

QUESTION 1. $($ Each = 1.5 points, Total = 12 points) Answer the following as true or false: NO WORKING NEED BE SHOWN.
(i) $\operatorname{dim}\left(P_{7}\right)=7$.
(ii) Every 5 points in R^{4} are dependent
(iii) Every 4 points in R^{5} are independent
(iv) Every 6 polynomials in P_{6} form a basis for P_{6}
(v)-The point $(2,2,2,10) \in \operatorname{span}\{(1,1,1,1),(-1,-1,-1,7)\}$
(vi) If v_{1}, v_{2} are independent points in R^{3} and $v_{3} \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for R^{3}
(vii) If v_{1}, v_{2}, v_{3} are dependent points in R^{5}, then $v_{1},-3 v_{1}+v_{2}, v_{3}$ are also dependent points in R^{5}.
(viii) If $D=\operatorname{span}\{(2,-2,0),(-2,2,1),(4,-4,1)\}$, then $\operatorname{dim}(D)=2$

QUESTION 2. $($ Each $=\mathbf{2}$ points, Total $=\mathbf{2 8}$ points) Circle the correct letter for each of the questions below:
(i) One of the following statements is correct
a. $(2,0,-2),(-2,10,20),(-4,-10,1)$ are independent
b. $(2,1),(0,1), 1,0)$ are independent
c. $(0,1,1),(-1,2,0),(-1,3,1)$ are independent d. $\{(2,1),(1,0.5)\}$ is a basis for R^{2}.
(ii) Let $F=\{(3 a+b, 0,6 a+2 b) \mid a, b \in R\}$. We know that F is a subspace of R^{3}. Then $\operatorname{dim}(F)=$
a. 2
b. 3
e. 1
d. cannot be determined
(iii) Consider F in the previous question. Then one of the following points does not belong to F.
a. $(1,0,2)$
b. $(2,0,4)$
d. $(0,0,0)$
e. $(3,0,5)$
(iv) Given v_{1}, v_{2}, v_{3} are independent points in R^{10}. One of the following statements is correct:
a. $v_{1}, v_{2}, 2 v_{1}+v_{3}$ are independent points in R^{3}
b. $v_{1}, v_{1}+v_{3}, v_{3}$ are independent points in R^{3}
c. $v_{1}, v_{1}+v_{2},-3 v_{1}+v_{2}$ are independent points in R^{3}
d. All previous statements are correct.
(v) Let $D=\operatorname{span}\{(1,1,1,1),(-1,-1,-1,0),(0,0,0,2),(-1,-1,-1,4)\}$. One of the following is a basis for D
a. $B=\{(1,1,1,1),(0,0,0,1)\}$
b. $B=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$
c. $B=\{(1,1,1,1),(-1,-1,-1,0),(0,0,0,2)\}$
d. None of the previous is correct
(vi) Let $H=\left\{a+(b+2 c) x+(3 b+6 c) x^{2} \mid a, b, c \in R\right\}$ be a subspace of P_{3}. Then $\operatorname{dim}(H)=$
a. 3
b. 1
c. 4
d. 2
(vii) Let H as in the previous question. Then one of the following is a basis for H
a. $B=\left\{1, x, 3 x^{2}\right\}$
b. $B=\left\{1, x+3 x^{2}, 3 x+6 x^{2}\right\}$
c. $B=\left\{1, x, 2 x, 3 x^{2}, 6 x^{2}\right\}$

$$
\text { d. } B=\left\{1, x+3 x^{2}\right\}
$$

(viii) Let $A=\left[\begin{array}{ccc}a_{1} & 2 & 4 \\ a_{2} & 4 & 8 \\ a_{3} & -4 & -7\end{array}\right]$ such that $\operatorname{det}(\mathrm{A})=20$. The value of x_{1} in solving the system $A X=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$ is
a. 5
b. 10
e. 0.2
d)Can not be determined
(ix) Consider the previous question, the value of x_{2} in solving the system $A X=\left[\begin{array}{c}4 \\ 8 \\ -7\end{array}\right]$ is
a. 0
b. 1
c. 0.1
d) None of the previous is correct
(x) Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & 2 & 1 \\ -1 & -1 & -2 & 2 \\ -1 & -1 & -1 & -2\end{array}\right]$ the (3,4)-entry of A^{-1} is
a. -3
b. -2
c. 0.2
d. 2
e. None of the previous is correct
(xi) Given A is a 2×2 matrix such that $\left[\begin{array}{cc}3 & 1 \\ 4 & -1\end{array}\right]+2 A=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$. Then $A=$
a. $\left[\begin{array}{cc}1 & -1 \\ -5 & -4\end{array}\right]$
b. $\left[\begin{array}{cc}9 & 5 \\ -2 & 1\end{array}\right]$
c. $\left[\begin{array}{cc}2 & -1 \\ -9 & 5\end{array}\right]$
d. None of the previous is correct
(xii) Given $\left(A^{T}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right)^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$. Then $A=$
a. $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
b. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
c. $\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$
d. None of the previous is correct
(xiii) One of the following is a subspace of R^{3} :
a. $\left\{\left(a, 2 a-b^{2}, 0\right) \mid a, b \in R\right\}$
b. $\{(a+b,-2 a, b) \mid a, b \in R\}$
c. $\{(3,-a,-b) \mid a, b \in R\}$
d. $\{0, b a+a,-2 b) \mid a, b \in R\}$
(xiv) One of the following is a subspace of P_{3} :
a. $\left\{3-a x+a x^{2} \mid a \in R\right\}$
b. $\left\{3 a x+a x^{2} \mid a \in R\right\}$
c. $\left\{x+a x^{2} \mid a \in R\right\}$
d. $\left\{a+a x+x^{2} \mid a \in R\right\}$

